Time accelerated Monte Carlo simulations of biological networks using the binomial r-leap method

نویسندگان

  • Abhijit Chatterjee
  • Kapil Mayawala
  • Jeremy S. Edwards
  • Dionisios G. Vlachos
چکیده

UNLABELLED Developing a quantitative understanding of intracellular networks requires simulations and computational analyses. However, traditional differential equation modeling tools are often inadequate due to the stochasticity of intracellular reaction networks that can potentially influence the phenotypic characteristics. Unfortunately, stochastic simulations are computationally too intense for most biological systems. Herein, we have utilized the recently developed binomial tau-leap method to carry out stochastic simulations of the epidermal growth factor receptor induced mitogen activated protein kinase cascade. Results indicate that the binomial tau-leap method is computationally 100-1000 times more efficient than the exact stochastic simulation algorithm of Gillespie. Furthermore, the binomial tau-leap method avoids negative populations and accurately captures the species populations along with their fluctuations despite the large difference in their size. AVAILABILITY http://www.dion.che.udel.edu/multiscale/Introduction.html. Fortran 90 code available for academic use by email. SUPPLEMENTARY INFORMATION Details about the binomial tau-leap algorithm, software and a manual are available at the above website.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Project Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks

The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...

متن کامل

Sensitivity Analysis of a Wideband Backward-wave Directional Coupler Using Neural Network and Monte Carlo Method (RESEARCH NOTE)

In this paper sensitivity analysis of a wideband backward-wave directional coupler due to fabrication imperfections is done using Monte Carlo method. For using this method, a random stochastic process with Gaussian distribution by 0 average and 0.1 standard deviation is added to the different geometrical parameters of the coupler and the frequency response of the coupler is estimated. The appli...

متن کامل

Stochastic Assessment of Voltage Sags in Distribution Networks

This paper compares fault position and Monte Carlo methods as the most common methods in stochastic assessment of voltage sags. To compare their abilities, symmetrical and unsymmetrical faults with different probability distribution of fault positions along the lines are applied in a test system. The voltage sag magnitude in different nodes of test system is calculated. The problem with the...

متن کامل

Extracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy

Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 9  شماره 

صفحات  -

تاریخ انتشار 2005